Návod k přístroji Aditest AS1 na měření obsahu antioxidantů v mazacích olejích

1. Princip metody	str. 1
2. Popis přístroje	str. 1
3. Roztoky a spotřební materiál	str. 3
4. Příklad stanovení	str. 3
5. Výsledky měření, výpočty	str. 8
6. Typy vzorků	str. 9

1. Princip metody

Během provozu jsou lubrikační oleje vystaveny podmínkám, při nichž dochází k jejich oxidativní degradaci. Pro dosažení delší životnosti se do těchto olejů přidávají antioxidanty na bázi fenolů nebo aromatických aminů. Přístrojem Aditest AS1 zjišť ujeme obsah antioxidantů v olejích metodou adsorpční stripping voltametrie podle odpovídajících mezinárodních norem ASTM D6971 – 09 a D6810 – 07.

Při voltametrické analýze se vzorek oleje přidává do pracovního elektrolytu. Dalším krokem je důkladné protřepání nebo promíchání tyčovým mixérem, kdy se aditiva extrahují do elektrolytu. Olej zůstává v nádobce ve formě kapek a po vložení elektrodového systému dochází k adsorpci aditiv obsažených v roztoku na povrch pracovní elektrody – diskové elektrody ze skelného uhlíku. Při stanovení probíhá anodická oxidace elektrochemicky aktivní látky adsorbované na povrchu uhlíkové elektrody. Měření se provádí v tříelektrodovém systému, referentní elektroda je platinová. V potenciostatickém zapojení se aplikuje lineární potenciálová rampa. Doporučená skenovací rychlost je 0,1 V/s. Výsledný proud v řádu jednotek až desítek mikroampér se zaznamenává jako funkce aplikovaného potenciálu a vyhodnocuje se plocha píků náležejících jednotlivým aditivům.

2. Popis přístroje

Přístroj Aditest AS1 se vyznačuje jednoduchým designem (Obr. 1). Na pohled se jedná o bloček válcovitého tvaru, ke kterému se konektorem (1) připojuje elektrodový systém (2) (detail Obr. 2), další konektor slouží k připojení USB kabelu (3) a spínač (4) slouží k zahájení měření, které lze spustit i prostřednictvím počítače. Otvory na vrchní straně přístroje slouží k umístění vialek se vzorky.

Elektrodový systém (**Obr. 2**) se skládá ze tří elektrod: pracovní elektrody ze skelného uhlíku s lesklým černým povrchem, referenční z platinového drátu a pomocné elektrody.

Obr. 1. Přístroj Aditest AS1. 1 - konektor na připojení elektrodového systému (2), 3 - USB konektor, 4 - spínač pro manuální zahájení měření.

Obr. 2. Elektrodový systém přístroje Aditest AS1.

3. Roztoky a spotřební materiál

3.1. Elektrolyty

Elektrolyt pro stanovení fenolických antioxidantů Fenstrip: směs ethanolu a destilované vody (10:1) obsahující rozpuštěný zásaditý elektrolyt. **Elektrolyt pro stanovení antioxidantů na bázi aromatických aminů Amstrip**: směs acetonu a destilované vody (10:1) obsahující rozpuštěný neutrální elektrolyt.

3.2. Skleněné vialky objem asi 10 ml, šířka hrdla nejméně 11 mm, aby bylo možno ponořit sondu.

3.3. Pipety na vzorek 0,1 až 0,5 ml na elektrolyt 3 až 5 ml

3.4. Mixér

Vzorky je možné protřepat ručně nebo lze použít malý tyčový mixér.

3.5. Tampony z buničité vaty na čištění vlhčené alkoholem se používají na čištění pracovní elektrody.

4. Příklad stanovení

4.1. Situace

Typické použití přístroje **Aditest AS1** představuje situace, kdy je třeba zjistit, jaký je obsah aditiva ve vzorku oleje, který již prošel zátěží v provozním procesu. V tomto případě porovnáváme obsah antioxidantu ve vzorku použitého oleje s obsahem antioxidantu v nepoužitém oleji, který považujeme za standard, a výsledek vyjádříme jako podíl zbytkového antioxidantu (výpočet viz kapitola 5.4.). V následujícím příkladu stanovujeme množství antioxidantu na bázi aromatických aminů v turbínovém oleji.

4.2. Příprava vzorku

Blank: do vialky o objemu 10 ml nalijeme 5 ml základního elektrolytu Amstrip.

Standard: ve vialce o objemu 10 ml smícháme 5 ml základního elektrolytu **Amstrip** a 0.4 ml **nepoužitého** oleje. Protřepeme.

Vzorek: ve vialce o objemu 10 ml smícháme 5 ml základního elektrolytu Amstrip a 0.4 ml vzorku použitého oleje. Protřepeme.

4.3. Měření

- 1. Propojíme přístroj s počítačem pomocí USB kabelu a připojíme konektorem elektrodový systém.
- 2. Spustíme v počítači program Diram Measure.
- 3. Nastavíme parametry měření. Zvolíme Zařízení/Uživatelské nastavení a zvolíme parametry podle

Obr. 3.

Diram Measure	1.910	
lenu Zařízení Graf Nápověda		
inoname>		
Voltamogram		Data
50,0-		Proud [µA]
:	Nastavení D X	0,00
43,8	Apikace Uživatelské nastavení	Napětí [mV]
	Volty	50.05
37,5	viciny vicková signalizace	
		Casovac [s]
31,3-	rarametry rampy	
	Režim cyklu: Oxidace 🔻	X: 417,754 Y: 51,210
25,0-	Počáteční potenciál: Absolutní	Pozadí
- : :	Absolutní počáteční potenciál (mV): 0	Standard
18,8-	Oxidační maximum potenciálu (mV): 1300 Oxidační maximum proudu (µA): 130	Vzorek
9E	Redukční maximum potenciálu (mV): -1200 Redukční maximum proudu (uA): -100	
12,0	Purchast rannu fail(k)	Databáze kalibrací
63		
	Cas na pripravu nadobky [s]: 5	Databáze výsledků
0.0-	Cas na stabilizaci nádobky [s]: 9 🔀	
300 500	1500	
Měření Kalibrace	N 300 1300	
# Konce Náboj Extra Označen		
vzorku	Ulož vybrané	
Množstvi	Smaž aktuální	
Množstvi		Start
Formát k	OK Stomo	
Připraveno k m	éření	
🔧 💾 🔌 Take a screen captur	🗎 Manuál.odt - LibreOf 💀 Diram Measure 🔗 Bez názvu - Malování	🍢 🗑 . il 🍕 10:47

Obr. 3. Nastavení přístroje před měřením.

4. **Upozornění:** před každým jednotlivým měřením je potřeba důkladně vyleštit povrch uhlíkové elektrody tamponem vlhčeným alkoholem. Tím se odstraní produkty oxidace a povrch se připraví na nové měření.

5. Stiskněte tlačítko Nová kalibrace.

6. Zvolte *Pozadí*. Ponořte elektrodu do čistého elektrolytu - vzorek **blank**.

7. Změřte pozadí zmáčknutím tlačítka *Start*. Výsledkem je černě zobrazená křivka (**Obr. 4**). Vyleštěte elektrodu.

Obr. 4. Výsledek měření pro čistý elektrolyt - blank.

8. Zmáčkněte tlačítko Standard.

9. Vložte elektrodu do vzorku standard.

10. Změřte standard zmáčknutím tlačítka *Start*. Výsledkem je modře zobrazená křivka (**Obr. 5**). Vyleštěte elektrodu.

Obr. 5. Výsledek měření pro čistý elektrolyt (černá křivka) a pro standard (modrá křivka).

11. Určete potenciál píku zmáčknutím *Potenciál píku* a kliknutím na maximum.

12. Určete hranice píku (červené čáry v grafu) kliknutím na *Ohraničení píku* a poté kliknutím na počátek a konec, jak je naznačeno na **Obr. 6**. Tím se označí oblast, která definuje pík. Plochu, která bude integrována pro zjištění plochy píku ohraničují vpravo a vlevo integrační meze (modré šrafované čáry). Integrační meze lze nastavit tak, aby byly shodné s hranicemi píku, nebo lze vymezit užší rozmezí potenciálu. Integrace v užším rozmezí může zpřesnit výsledek.

Obr. 6. Označení oblasti píku a jeho maxima.

13. Změřte podruhé standard. Výsledkem je další modrá křivka jejíž maximum je mírně posunuté vůči předchozí křivce (**Obr. 7**). Vyleštěte elektrodu.

Obr. 7. Druhé měření standardu.

14. Změňte potenciál píku kliknutím na *Potenciál píku* a na maximum křivky tak, aby obě maxima byla na stejném potenciálu (**Obr. 8**).

Obr. 8. Úprava potenciálu standardu.

15. Změřte potřetí standard stejným postupem, upravte potenciál, pokud je to potřeba. Výsledky by měly být stabilní a reprodukovatelné. Vyleštěte elektrodu.

16. Zadejte název kalibrace do políčka *Označení kalibrace* a uložte kalibraci tlačítkem *Ulož vybrané*.

17. Jděte do Databáze Kalibrací a vyberte kalibraci kliknutím na Použít.

- 18. Na hlavní obrazovce v záložce Měření se objeví název použité kalibrace (na Obr. 9 KAL1).
- 19. Zadejte označení vzorku (vzorek 1).

20. Změřte vzorek zmáčknutím tlačítka *Start*. Výsledkem je zelená křivka (Obr. 9). Vyleštěte elektrodu.

Obr. 9. Výsledek měření pro čistý elektrolyt (černá křivka), **standard** (modrá křivka) a pro **vzorek** (zelená křivka).

21. Posuňte pík kliknutím na *Posun píku* a poté na příslušné místo na obrazovce tak, aby maximum píku vzorku bylo na stejném potenciálu jako standard (**Obr. 10**).

Obr. 10. Úprava potenciálu vzorku.

22. Zobrazí se údaj o koncentraci (Obr. 10, 47,6 %).

23. Stejným postupem se měření opakuje nejméně třikrát, dokud nedosáhneme stabilních a reprodukovatelných výsledků (**Obr. 11**). Naměřené hodnoty 47,6 %, 44,7 % a 46,0 % můžeme zprůměrovat a dostáváme výsledek 46,1 %. Použitý olej obsahuje ještě 46,1 % původního obsahu antioxidantu.

Obr. 11. Výsledek měření pro čistý elektrolyt (černá křivka), **standard** (modrá křivka) a třikrát změřený **vzorek** (zelená křivka).

5. Výsledky měření, výpočty

V příkladu v **Kapitole 4** byl standardem myšlen nepoužitý olej a výsledky byly vyjádřeny v procentech jako podíl zbytkového antioxidantu vzhledem k nepoužitému oleji:

%zbytkový antioxidant = $\frac{plocha píku vzorku}{plocha píku standardu}$ *100 procent ,

kde plocha píku je shora ohraničená naměřenou křivkou a zdola přímkou narýsovanou mezi průsečíky naměřené křivky a červenou hranicí píku (viz **Obr. 8**., meze integrace jsou znázorněny modrými přerušovanými čarami). Přitom od naměřené křivky je předem automaticky odečten blank - měření pro čistý elektrolyt.

Pokud je znám obsah antioxidantu ve standardu, lze vypočítat obsah antioxidantu ve vzorku, a to v procentech nebo v mmol/l:

%antioxidant =
$$\frac{plocha piku vzorku}{plocha piku standardu}$$
 *%antioxidantu ve standardu

koncentrace antioxidantu =
$$\frac{plocha piku vzorku}{plocha piku standardu} * koncentrace antioxidantu ve standardu$$

Pokud je k dispozici zvlášť lubrikační olej a aditivum, je možno provést kalibraci pomocí sady standardů o různé koncentraci aditiva. Program **Diram Measure** umožňuje provedení kalibrace pomocí sady standardů a automaticky provádí výpočet koncentrace ve vzorku.

6. Typy vzorků

6.1. Antioxidanty na bázi fenolů

Jedná se o látky jako 2,6-di-*tert*-butyl-4-methylphenol, 2,6-di-*tert*-butyl-4-butylphenol, 4,4 '-methylenebis (2,6-di-*tert*-butyl-4-butylphenol). Tyto látky poskytují v acetonovém elektrolytu píky v rozmezí 1,3 až 1,6 V a v ethanolovém elektrolytu v rozmezí 0,3 až 0,6 V. Pokud stanovujeme pouze fenoly, je nejlepší použít ethanový zásaditý elektrolyt **Fenstrip**.

6.2. Antioxidanty na bázi aromatických aminů

Jedná se o fenyl alfa naftylaminy a alkylované difenylaminy. V acetonovém neutrálním elektrolytu poskytují píky mezi 0,8 a 1,2 V. Pokud stanovujeme pouze aminy nebo aminy a fenoly současně, je nejlepší použít neutrální elektrolyt **Amstrip**.